Zeta Annuities, Fractional Calculus, and Polylogarithms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resurgence of the Fractional Polylogarithms

The fractional polylogarithms, depending on a complex parameter α, are defined by a series which is analytic inside the unit disk. After an elementary conversion of the series into an integral presentation, we show that the fractional polylogarithms are multivalued analytic functions in the complex plane minus 0 and 1. For non-integer values of α, we prove the analytic continuation, compute the...

متن کامل

Multiple q-zeta functions and multiple q-polylogarithms

For every positive integer d we define the q-analog of multiple zeta function of depth d and study its properties, generalizing the work of Kaneko et al. who dealt with the case d = 1. We first analytically continue it to a meromorphic function on C with explicit poles. In our Main Theorem we show that its limit when q ↑ 1 is the ordinary multiple zeta function. Then we consider some special va...

متن کامل

q-Multiple Zeta Functions and q-Multiple Polylogarithms

We shall define the q-analogs of multiple zeta functions and multiple polylogarithms in this paper and study their properties, based on the work of Kaneko et al. and Schlesinger, respectively.

متن کامل

Continued-fraction Expansions for the Riemann Zeta Function and Polylogarithms

It appears that the only known representations for the Riemann zeta function ζ(z) in terms of continued fractions are those for z = 2 and 3. Here we give a rapidly converging continued-fraction expansion of ζ(n) for any integer n ≥ 2. This is a special case of a more general expansion which we have derived for the polylogarithms of order n, n ≥ 1, by using the classical Stieltjes technique. Our...

متن کامل

Fractional vector calculus and fractional Maxwell’s equations

The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2022

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4049283